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Abstract

Functional Programming is frequently advocated as an appropriate programming discipline

for parallel processing because of the difficulty of extracting parallelism from programs

written in conventional sequential programming languages. Unfortunately, the use of

Functional operations often implies excessive copying or unnecessary sequentiality in the
access and construction of data structures. Logic Programming languages can use logical

variables to manipulate data structures more easily; however, parallel implementations of

them are not well understood.

Two new programming languages which extend Functional languages with some of the

additional expressive power of logical variables for manipulation of data structures are

introduced. These new languages are studied in the context of two programs which cannot

be expressed efficiently in a Functional language: the flat-structure problem, and the deep-

append problem. The first new language allows the flat-structure problem to be solved

efficiently, but loses the referential transparency of Functional languages. The second

allows the deep-append problem to be solved also, but loses the property of determinacy.
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§ 1.0 Data Structure Manipulation in Functional Languages 5

Chapter One

Data Structure Manipulation in Functional Languages

1.1 Introduction

Parallel processors have great potential for increasing the speed of computation; however,

the languages and techniques used to program parallel machines may be quite different

from those used to program sequential processors. Common programming languages, for

example, FORTRAN, C, or Pascal, have many features of sequental machine architectures

visible in the language. The most troublesome feature is the notion of reusable storage

locations which introduces significant synchronization overheads for parallel execution.

Using a storage location more than once introduces an additional dependency in the

program. The dependency serializes the two uses of the location to avoid unintended

interference. Kuck [24] gives techniques by which some of these storage dependencies can

be eliminated from Fortran programs thereby exposing parallelism in sequential programs.

However, the complexity of compilation is increased dramatically and for many programs,

only a fraction of the potential parallelism is exposed.

Functional programming languages have been advocated by many researchers as ideally

suited for execution on parallel processors because they have no notion of a store so that

unnecessary dependencies cannot be expressed, In Functional languages variables always

represent values and they cannot be used to represent locations of a store in assignment

statements. Some parallel architectures have been designed specifically for the execution of

functional languages [14. 20. 26. 34, 151.1In addition, complete functional languages now

exist which support desirable modem programming techniques like higher-order functions,

data abstraction. and type inference [9. 361. Unfortunately. many applications programs can

only be expressed in a seemingly awkward or inefficient manner as functional programs. In

"" particular, it is difficult to manipulate arrays and to append to data structures.

lnitll,. Dataflov prcessors [15. 21 were intended to execute functional kIlgiigCs Whso: this work is part of

an onoilg cl Ini to extend the gencriiN 01 1.1111!l.iCeS COccULihC on ):itlo, princcs,,ors

5
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§ 1.1 Data Structure Manipulation in Functional Languages 6

Logic Programming languages [23] share some of the properties of Functional Languages in

that they also have no concept of a store. Moreover, it is easier to express the manipulation

of data structures in Logic languages because of the properties of logical variables. In a logic

program, a variable need not be introduced as the value of a computation, but rather can be

introduced without a value, its value to be determined through constraints placed on it by

the rest of the program. Unfortunately. Logic languages seem difficult to implement and

there is no wide agreement about architectures or algorithms for their parallel

execution [10, 38, 37, 33, 18, 6. 13]. Also, inclusion of modem techniques like higher-order

functions, or data abstraction into Logic languages is still a subject of current

research [17, 421. Logic languages are continuing to evolve and have not yet reached a

mature stage of development. This makes the design of appropriate execution architectures

somewhat premature.

This thesis deals with the question of whether the behavior of logical variables from logic

languages can be added to the functional paradigm to yield a hybrid language having more

expressive power than functional languages. Such a language would be able to manipulate

arrays and append to data structures as easily as a logic language, yet would maintain most

of the other features of functional languages. The answer to this question seems to be yes,

depending on one's goals and expectations. Functional languages have referential

transparency[351, a property which contributes much to the simplicity and semantic

elegance of functional programs. Functional programs also have the useful property of

being determinate, and correct parallel implementations of them must preserve this

determinacy. This thesis will present a functional language and two extended languages

each derived by adding a feature of logic programming having to do with logical variables.

While these extensions add expressive power. - each feature is added. some property of the

functional language is lost: first referential transparency, then determinacy. On the other

hand. the extended languages will both have the original functional language as a subset:

therefore. all the powerful features of functional programming -such as higher-order

functions- ire still a aillblc. All the languagcs presented are pedagogical in nature: they

arc ftar illustrating the c\prcssi'e power only. and should not be misinterpreted as finished

language designs.

6
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§ 1.1 Data Structure Manipulation in Functional Languages 7

The investigation will begin with a Lambda-calculus based functional language, which we

will call Lambda. The extended languages will be called Delta, and Eta. All three languages

will have a common Lisp-like syntax. The benefit of this is that this syntax is easily

distinguished from the algorithmic-style language we will use to present the interpreters for

the languages. Two programs, inverse permutation and tree append, will be written in each

of the three languages; these programs are intended to exercise the data-structuring facilities

of the languages, and will highlight the additional expressive power of the extended

languages. In addition to these specific programs we will also look at how the extended

language features help with I/0, and with programming using non-determinism.

1.2 A Functional Language: Lambda

The syntax of our functional language, Lambda, is given below.

Identifiers = I = a. b, c, x. y, factorial, apples, etc.
Constants = C= 1,.,... +, -, X,>, nil, true, f&130,... and other constants.
Expressions = E = Cl ISII.E IE E I+ E E2 I

if El E2 E3 1(E)

(letrec ((I E,) (12 E2) ... (1k Ek)) E)I(1 1 2 ... [k E::

Expressions of the form (E, E2) are called applications. The first expression of the

sequence, is called the rator. It is assumed to be a function to be applied to the second

expression, called the rand, which is the argument. As is customary in the Lambda calculus,

E, E2 ... E. isthesameas
((...((E E2) E3 ) ...) Ek).

i.e., application associates to the left. Expressions of the form (\x.E) are called

abstractions. Again. by the usual conventions of Lambda calculus, the scope of the dot

extends as far to the right as possible, and parentheses are used when necessary to make the

grouping oF expressions unambiguous. Intuitively. abstractions are the expressions used to

dcscribc uscr-dcfincd functions. The category S contains "s)ntactic sugarings" to providc

additional Lisp-like syntax. Thus:

7
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§ 1.2 Data Structure Manipulation in Functional Languages 8 %

(X (x y... z) E)

is equivalent to

(;x. (Xy. .... (Az.E) ...).

Letissyntacticsugarfor: (X (11 12 ... k E) E E2 ... Ek )and Letrec is

used to create recursive definitions in a manner similar to let [19]. Recursion can be

modeled in lambda calculus by using self-application or the Y-combinator [30].

This language is effectively Lambda calculus extended with booleans, integers, primitive

functions on the integers, conditional branch, and and equality predicate which determines

if two integers or booleans are equal. We assume that the reader is familiar with functional

programming and omit a detailed operational description of this language. In our informal

discussion, we use a call-by-value execution.

1.3 Programming in Lambda

We now turn to programming in Lambda, and analyzing the expressive power of functional

programming languages. There are no primitives for data-structuring in Lambda, but they

can be easily modeled using the already existing features. For example, tuples of any fixed

size can be implemented using higher-order functions:
(let ((four-tuple

(, (xl xZ x3 x4)
(, (index)

(If (. Index 1) xl
(if (" Index 2) xl
(If (- Index 3) x3
(if (- Index 4) x4
(if (i Index 0) 4 returns the length

now to use the four-tuple

(let ((tup (four-tuple 2 3 8 7))) creates the tuple
(, (tup 2) (tup 4)))) accesses the tuple

should result In an answer of 10.

Four-tuple is a higher-order function, and A call to it with four arguments returns a

function which when applied to the integers 1. 2. 3. or 4. returns the respective original

argumctnt. Apph ing it to 0 Niclds 4. the length of the structure. It should be clear that the

fjmiliair cons. car. and cdr data-structure of Lisp is also c.s to implement in Lambda. I his

tCLhnique works because function 'values are often represented Ls lexical closures. that is. an

2.S



§ 1.3 Data Structure Manipulation in Functional Languages 9

ordered pair containing the function definition and an environment which contains the

values of the free variables used in the function definition. Producing a function value

usually implies allocation of storage to extend the environment, so it is not surprising that

data structures can be modeled using higher-order functions.

An important restriction to notice about these data-structures is that all the contents of the

structure must be supplied at the time of the creation of the structure.2lt is not possible to

first allocate an empty tuple, and then use indexing tofill in the elements as one could in an

imperative programming language; nevertheless, once a structure has been created it can be

indexed freely.

Since we can model tuples using closures in this manner, it is reasonable to make tuples a

part of the language by providing four forms for manipulating them.

(tuple El E2 ... Ek ) will be used to create ak-tuple. (select E, E2 ) will choose

" the element ofE 2 stored at index E,. (replace E, E2 E3 ) will produce a new tuple

by copying E2 , except at index E,, where it will store the value of E3 instead. Finally,

(tuple-length E, ) will return the length of a tuple as an integer. We will assume that

tuple and replace operations take O(k) time and space- that is, their complexity grows
with the size of the tuple being manipulated. select and tuple-length will be assumed

to take constant time.

1.4 The Flat Structure Problem

To discuss the limitations of Lambda, the first program we will consider is inverse

permutation. This program is designed to test the ability to manipulate arrays or flat

structures in a programming language. The problem is defined as follows:

Input: An array. A, of length k of integers.
Each elemenL A[i]. contains one of the integers 1,2,...k.
No two elenents contain the same integer.

Output: An array. B of lcngth k. where B[i] = A[A[if] for i = 1.2...k.

A program for performing this in Lumbda is:

In Il'tmctionA Idnpm gcs. ,, program to compute e ich element must be .upphcd at the time of cre'.taion of

thc irukturc In cit cr cj,c. 1,o lliL ng iN, i,- .lmtcd , ih ~inch 1c1cnnit o1 he msructlre.

9
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§ 1.4 Data Structure Manipulation in Functional Languages 10

(letrec

((Iterate-loor (X (index A 8)
(if (> index (tuple-length A)) I

(lot ((nexti (replace Index I (select (select index A) A))))
(iterate-loop (+ index 1) A nexti)))))

(Inverse-permute (A (A) (iterate-loop 0 A A))))6

(inverse-permute (tuple 2 3 5 4 1))) ;;perform the algorithm.

the answer is the tuple 3.6,1.4.2.

This program consists of two function definitions. iterate-loop and Inverse-perMUte.

The iterate-loop routine is written recursively since we have no iteration construct in

our language; during each recursion, one element of the result tuple is determined

according to the specification above. The program inverse-permute simply calls the

function iterate-loop to do the work. A simple analysis of iterate-loop shows t~hat the

behavior of t~his program is quite poor. Each time the function recurses, replIace is called

once, involving 0(k) work for input of size k. The function recurses k times, so 0(k2) time

and space are used by this program, assuming. that storage is not recycled by any garbage

collection mechanism.3. Of course most of the storage is easily reclaimed in functional

languages by a simple reference count scheme; however, the inability to update an array

efficiently takes this simple algorithm from 0(n) time to 0(n)tieItsolbecarht

the common use of "flat" tuples for vector-like data structures in numerical applications.

will not be efficient in pure functional languages simply because of the cost of updating

these structures. 4Some researchers advocate a tree representation even for vector-like data

structures to reduce the overhead for replace from 0(n) to 0(log n) [1].

3 It is reasonable to propose that a compiler perform automatic program transformations to reduce the kinds of
nefnTicencies shown here. The compiler would corn~ert the functionafl progrm i n eclui~alent imperauve

proorum w hich is more efficient 139] [51. The objection exrpressed here to fuinctional p rovrims is not that they
canlnot hase efficient and effective compitlers, but only that the langudge does not allow one to express programs
A hich are as efficienit as one would like.

There ire sever-A techniques for inipro~ing the cfficiencv of repl ace in furinti nal i~iges. An important
ore i'. lkccpiiq! rLCCIC lccic iLMIfi Ii' the iiiiiliber of CIItsI-indilic referet"ces to Ji Structure It the referenice couut1 of

1 ueis citI then it citf beC upk~ied mt plae %tkhout cop\inig the conic nt, into a new strtulre.
L n t inn mi.tch, the wors c~o lmrti tinifr ilg Amii-tbiii is unchingeil. and in the ii1~erse cr tauL1.1.oii algorlim.
such in optiinimmio n would oi l he p so hie it the C \eCiiLion uike pLice comipleteR sequIciii .i Parallel iccess

to the structures in,.olved imnplies. th~it the refercnce couints will gencr,illy be greater than I.

10
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§ 1.4 Data Structure Manipulation in Functional Languages 11

1.5 The Deep Append Problem

The deep append problem is motivated by the suggestion that tree-like representations of Z-

data-structures be used for functional programming. The program we will use to illustrate

the problem is called tree append. The problem is:

Input: A list of integers, each distinct.
Output: A binary search tree of these integers produced by appending the integers one at

a time to the tree.

The key restriction of this definition is that this is an "on-line" problem; that is, we can

think of the list of integers as being produced slowly, and the algorithm must append each

integer to the tree as soon as it becomes available. In other words, the point of the program

is to express appending, not to express construction of a whole from a collection of the

individual elements. To write this program in the Lambda language, we will assume that we

have a tuple constructor called make-node which makes a node of a tree containing a

left-subtree, right-subtreo, and node-value, where the corresponding field of a

node is selected using a function with the same name. We will also assume there is a

distinguished constant n il which is recognized by the predicate function nul l ?. This will

be used to represent the empty tree, and the empty list. The list of integers will require the,-. -

familiar cons, car, cdr, and l Ist list operations.
(lotroc.

((append-integer (X (nt tree)

;; appends an integer to an existing tree.

(if (null? tree) (make-node nil nil tnt) ;; add the integer at a lese

(if (< tnt (node-value tree)) else compare to current node value

(make-node (append-Intoger tnt (left-subtroe tree)) ; append to left
(right-subtree tree)
(node-value tree)))

(make-node (left-subtree tree)
(append-integer tnt (right-subtree tree)) or to right
(node-value tree)))))

i ~~~ ~~.:. .. . . ....."-'--..•- - -- . .."" "- ' *' - ,-..' - '..° .- "... .. .-
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(tree-append (X (list-of-tnts tree)

appends elements of list one at a time.

(if (null? list-of-ints) tree done, so return the finished tree.

(tree-append (cdr list-of-ints) :; append one and recurse
(append-integer (car list-of-ints) tree)))))) ,.

(tree-append (list 4 3 6 2 8) nil)) ;now try it out.

The program consists of two routines: tree-append and append-i nteger. Tree-append

recurses once for each integer to be appended to the tree, calling append-integer each

time. Append-integer just recursively descends the tree comparing the integer to be

appended with each value, and descending the left or right subtree depending on the

outcome of the comparison. The important property of this algorithm is that it must call

make-node once for each node on the path from the root of the tree to the leaf where the

integer is inserted, potentially copying a large number of nodes as is shown in figure 1-1.

This copying seems quite expensive, and makes this algorithm require at least O(n log n)

storage with a worst case of O(n2), instead of O(n). It seems that in general, functional

programs will require more storage than imperative versions of the same algorithm. This

inefficiency seems to be a high price to pay for a language that obeys the single-assignment

rule.

We have now looked at a simple functional language, and how data-structures are modeled

in it. Two programs were used to point out particularly troublesome aspects of data-

structure manipulation. The next section of the paper will show an extended language,

Delta, and compare its performance on these same two example problems.

12
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Initial Tree Result of Appending 2

Copied

Nodes

31

Figure 1-1: An integer being appended to a tree in the tree-append program.

13



§ 2.0 Extending Functional Programming with Logical Variables 14

Chapter Two

Extending Functional Programming with Logical Variables

2.1 The Delta Language

Functional language Lambda can be extended to include some features of Logic

Programming languages. Languages such as Prolog have many attractive properties, such as

pattern-driven invocation, or automatic backtracking, but for our purposes the feature of

interest is variable binding by unification. This will extend the expressive power of our

language in a manner still consistent with the single assignment principle.

Logic Programming languages have the ability to introduce identifiers which do not stand '5,

* for values. This property is inherited from the behavior of the existential quantifier in

logical formalism: 3x 3 P(xy) A Q(x) This notation introduces an identifier x and asserts

predicates which must be true for some x. For example: 3x 3 x = 5 is rather trivial;

moreover, 3x 3 x = 5 A x = 7 clearly does not have any solution, and

3x 3 x = (zw) A z = 5 A w = ffz) requires x to be a pair (5,ff5)). This property of

introducing an identifier, and later constraining its value will be useful for enhancing the

power of our language to deal with data structures, and it is this origin in logic that prompts

the title "Logical Data Structures".

The extended language will have very similar syntax to the functional language of the

previous section:

Identifiers = I = a. b. c, x, y. factorial. apples, etc.
Constants = C= 1.-.3.... +,)-...>nil, true. false.... and other constants.

Expressions =E =C1 ISIXINl.E fE, E2 1+ E; E2 I
if El E2 Es l (E)

14
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§ 2.1 Extending Functional Programming with Logical Variables 15

:. Sugarings •S= (lt ((1I E, ) (12 E ) .. ( k E ) ) E)"",

(letrec ((I, El) ('2 E2 ) ... (k Ek)) E).
(Mlt 12 ... Ik ) E)

Extensions = X = (new) I (do E, E2  Ek) ( == El E2 1

This syntax is identical to the language Lambda except for the category X of extensions.

Three constructs have been added to the language. The first, (new), will be used to create

unbound variables. For example, ((Xx. E) (new)) introduces x as an unbound variable

for the scope of the body E.

(do E, E2 ... Ek ) will be used to evaluate forms which constrain unbound variables.

The expressions E/, E2  up to Ek. are evaluated for their effect on unbound variables.
*- Any values they return are ignored; the value returned by a do form will be the value of the

last sub-form. Ek. do is intended to be used in conjunction with the - operation. (-= E

*. E2 ) will implement Delta's primitive subset of variable binding by unification, a kind of - -

*. benign side-effect. The mu operator should be read as "equate". Equate operators force the

results of two computations to be equal. If one computation produces an unbound variable,

via the (new) feature. -- can be used to give it a value by introducing the constraint that

- this unbound variable have a value equal to that of another expression. This is different

from an imperative assignment since -- will succeed only on two unbound variables, one

unbound variable and one value, or two equal values No read-write race can occur in Delta

because one can never use an unbound variable for any computation: it must be bound first.

In addition, once a variable becomes bound to a value, that value can never change. The

effect of -- is simpler than unification since there is no recursive unification of data-

structures or occurs check. Specifics on the interpretation of the equate operation as well as

(now) will be deferred to the operational semantics given later.

It is important to note that the existence of a feature like (new) violates the property of

riferenmtal transparencv which existed in functional languages. Each appearance of (new) is

recant to create a unique new unhound variable, and since they can occur in delinitions of

rccursi~e functions. an arbitrary number of them can be created by any program.

15
'°,-



§ 2.1 Extending Functional Programming with Logical Variables 16

Referential transparency is an important property of functional programs since it allows any

expression to be replaced by an equivalent. For example, the following two programs in

Lambda are equivalent:
(lot ((X (+ y Y)) •M

.X y z))
(I (+ Y Y) (+ Y Y) Y z)

The variable x in the first expression was replaced by its value (+ y y). Referential

transparency makes it possible for these two programs to be shown equivalent, and is very

useful in program transformation. Delta programs are not referentially transparent, and it is

easy to exhibit a program showing this:
(let ((x (cons (new) (new))))
(do
(-- (car X) 5)
(-- (cdr x) 0)
A))

" In this code the variable x is introduced representing a "cons-cell" with unbound

components. Then equate is used to non-locally constrain the car and the cdr of the cell, and

finally the cell is returned. All the uses of the variable x must refer to the same value, i.e., an

identical object. We cannot substitute the form (cons (new) (new)) for x, since doing so
would make the equate operators ineffective. Clearly, manipulation of Delta programs will

require far more care than that of purely functional programs.

2.2 The Need for Interpreters with Simulated Parallelism

Our next goal in this thesis is to provide a concrete operational semantics for Delta so that

questions of precisely how (new). --, and do work can be answered. Unfortunately, this is a

non-trivial task which motivates a brief digression. Consider that a term rewriting system

can be used as an operational semantics for a language. In a term rewriting system, there is

a set of rules for rewriting expressions. An expression which can be rewritten by one of the

rules is called a redex. and expressions are rewritten using the rules until some normal
form 121. 71 is obtained. A normal form is an expression which contains no rcdcxcs, and is

what we would like to use as the "answer" to a computation. Given that an expression

contains several redexes which can be rewritten, a computation rule detcrmines which

redexes are reduced during each step of the rewriting process. From this point of view, both

16



§ 2.2 Extending Functional Programming with Logical Variables 17

Lambda and Delta exhibit the Church-Rosser property [30]. This is equivalent to saying that

the languages are determinate, a well known property of functional languages, and one

which we will discuss for Delta in a later section. The Church-Rosser property says that

when a normal form exists it is unique.51n other words, the use of different computation

rules can not lead to different normal forms. We know that an expression in our source

language may not have a normal form, since all our languages are capable of representing

unbounded computations. Moreover, some computation rules for reducing expressions may

find normal forms when other rules do not terminate. Klop [211 classifies a computation

rule as normalizing if it is guaranteed to find a normal form when one exists. In this

framework, Functional languages based on the Lambda calculus have many normalizing

computation rules including normal order reduction, a sequential rule which always reduces

the leftmost redex of an expression. 6Luckily, the parallel reduction rule, which says to

reduce all redexes simultaneously during each step, is also normalizing. The key point here

is that there is at least one sequential computation rule which works for functional
languages: hence, an operational semantics for a functional language can be given by a

sequential term rewriting system. In other words, a simple sequential interpreter can be

written for functional languages.

An operational semantics for Delta is harder to achieve. I fPict, there is no sequential

computation rule for Delta which is normalizing, hence, our operational semantics must be

some kind of parallel reduction system. An expression in Delta which has no simple

sequential interpretation is:
(lot ((x (new)) ;Introduce unbound variables x and y

(y (now)))
(4 (do (--y 6) constrain y

X X ))
(do (-- x 8) constrain x

(- y y)))) -. .

the answer should be 64

Informally, it is easy to observe the non-sequential nature of this expression. First x. and y

The Eta Ilrgt i.ige. hch is niroduced in ch:iptcr 3. does not exhihit the Church-R oser property.

6he rL-.etncuon to functiond lingtuages based on larmNbda calculus is intended to rule out non-sequential
funct ions.

17
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are introduced as unbound variables. At this stage, we must next perform one of the equate

operators in (m= y 8) and (== x 8). If we chose to evaluate the first of the do

expressions, then we will not perform the (-- x 8) which is needed to give a value to the

expression (* x x), so we will not be able to reduce the whole expression. By symmetry,

we cannot chose to reduce the second of the do expressions either. To be able to reduce the

expression completely we must be able to reduce parts of both do expressions alternately.

One way to capture the notion of parallelism in execution is to note that if two reductions

can occur in any order then they can occur in parallel; therefore, any reduction rule which

can reduce this expression must be a parallel reduction rule.

2.2.1 A Quasi-Parallel Lambda Interpreter

To give an operational semantics for Delta we need an interpreter which simulates a parallel

execution. The structure of such a quasi-parallel interpreter is complex. To avoid confusion.

we will first describe a quasi-parallel interpreter for the Lambda language. This will

illustrate how the parallelism is simulated only. Afterwards we will modify the quasi-

parallel interpreter as an operational semantics for Delta.

A simple sequential interpreter for Lambda excluding syntactic sugaring is given below:

W(x) x
W(Nx. E) x. E-
W(E E2)= let a = W(E)"

ifa = Xx.E then W(EIE/x)
else error

W(+ Et E2)=, let a W(E)-
•- = w(E2)

if a E N andfE E N then a + f
else error

W(1f EI E2 E.)=,leta= W(E1 )

ifa = true then W(E2 )
else W(E3 )

In this interpreter, the clause for interpreting (+ E/ E2 ) should actually be thought of as

a clause schema: all binary operators in the language are implemented in an analogous

Cashion. The notation E[V/xl is used here to denote substitution of the value. V for the

18



§ 2.2 Extending Functional Programming with Logical Variables 19

symbol x with appropriate renaming of identifiers so that correct lexical scoping is

preserve .

This interpreter reduces expressions in Lambda into weak, head-normal forms [3], but only

if these forms are individual symbols or abstractions. In the Lambda calculus, a weak,

head-normal form is a form where the rator of the leftmost application is not an abstraction,

and is not convertible to an abstraction. For our language, Lambda, we add to this

definition that the leftmost application is not (it E, E2 E3 ) or (+ E, E2 ) since these

forms can always be reduced further.

We will now define an interpreter which produces nearly the same answers as the sequential

interpreter above, but which executes with simulated parallelism. It will differ in its

termination properties only. The interpreter's state will consist of an activity queue, and a

store, and the interpreter will be described as a state-transition function, M. The following

equations are definitions of the various objects and functions used by the interpreter, M:

Integers N= 1,2,3....
Values V =I Iclosure(E,p)IN
Identifiers I a. b. c, x, y, etc.
Expressions E = I I\x.E lEE + E E IifE EE I(E)
Locations Loc 0, 1, 2 ...

Environment p = I --,(Loc + 1)
Store a = Loc - (V + UNBOUND + Loc)
Activity Act = <INTERP, E, p, Lo> +

<APPLY, Loc, Loc, Lo> +
<+, Loc. Loc. LoO
<BRANCH, Loc, E. E, Lo

Activity-Queue Act

State Act* X a

M State -. State

The environment. p. is a mapping of identifiers to the locations they represent. As in the

scqticntial Lwnbda interpreter above. unbound identifiers are considered io be constat-s so

19
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§ 2.2 Extending Functional Prograunming with Logical Variables 20

the environment will map unbound identifiers to themselves. Applying the environment to

an identifier, p(1), returns the location which that identifier represents. Substitutions are

used to indicate extensions to the environment- p[L /I1. An initial empty environment will

be denoted by po0.

The interpreter will make use of environments, p, to represent the substitutions of values for

bound variables; therefore, the set of values includes lexical closures of expressions and

environments built by the operation closure(E ,p).

The store, a, behaves like a memory which is indexed by location, and the values held in it

are either identifiers, integers, lexical closures, or other locations. Applying the store to a

location, a(L), will retrieve the value or location stored there. Substitution notation,

a[ VIL J, will be used to indicate changes to the store. The store returns UNBOUND for any

location which is new; that is, has never been changed. New locations in the store are

allocated using the function new(c). 7 Since locations can be stored, we will use the auxiliary

function deref to dereference locations in the store. Deref could be defined by:

derelRL ,a) =

if a(L ) Loc then L
if a(L) E Loc then derefa(L ),a)

Note that deref always returns a location, never a value. It follows the chain of pointers in

the store until it reaches a location which doesn't contain another location; this location is

returned. Finally, an initial empty store will be denoted by a0. ,

Activities are the units of work for our interpreter. For Lambda there will be four different

activity names: INTERP. APPLY, , and BRANCH. The activities are records containing the

7 This way of getting an unused location of the store is not entirely clean since nev%(a) actually returns a
different locauon each time it is caled. This could be made cleaner by having nem(a) return both an unused
locauon and a store, so that to allocate two locauons one would do something like:

L. := new(C)

L2. := e(o ) 1)

Although more correct, this stle leads to , more cluttered operational semantics later on. We hope that the use
of ,iena) in an imperai|tve manner is simple enough to remain clear.

20
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§ 2.2 Extending Functional Programming with Logical Variables 21

activity name- and one or more parameters necessary for that operation. Activities are
executed by the machine, and this can result in new activities entering the activity queue, as --

well as updates to the store. The INTERP activities consist of:

1. The name INTERP

2. An expression in the source language, E
3. An environment, p
4. A destination location, L

We will notate interp activities as (INTERP, E, p, L . The intended effect is to evaluate

expression E in the given environment and to store the answer into location L.

The APPLY activity will consist of:

1. The word APPLY

2. A rator location, L,
3. A rand location, L2

4. A destination location, L3

and will be notated: <APPLY, Ll, L2 , L3 ). This activity is intended to read the rator

location, L and when it contains a closure, closure(Xx. EI ,p), then the environment, p, is
extended to map identifier x to the location of the rand, L2 . Finally, the expression E, is
evaluated in the new environment to produce an answer which is written into location L3 .

The + activity will consist of:

1. The name +
2. A location for the first operand, L-
3. A location for the second operand, L2

4. A destination location, L3

and will be notated: <+, L , L2 1 L3 >. This activity is intended to read the two locations,

L/. and L2 . and when they are bound to integers, to store their sum into L3.

The BRANCII actik ity will consist of:

1. Thc name BRANCH
2. A predicate location. I.,
3. A consequent expression. E.

21

. ..- . -.



§ 2.2 Extending Functional Programming with Logical Variables 22

4. An alternative expression, E2

5. An environment, p
6. A destination location, L 2

* and will be notated: <BRANCH, Ll El E2 p, L2 >. This actiity implements a conditional

branch by reading location Lt . When L is bound, then if its value is true E is

* interpreted into L2 " otherwise, E2 is interpreted into L2 -

The activity queue, Act , is a collection of zero or more activities and is manipulated by

appending or removing activities using the "*" infix operator. For example,

I.%'TERP, E,, p, LI >-A represents an activity queue whose first element is the JNTERP

activity, and the remainder of which is denoted by A. Similarly, A*<INTERP, E,, p, Li >
denotes an activity queue whose last element is the INTERP activity, and whose other

(preceding) elements are denoted by A. Nil is used to denote the empty activity queue, and
nilA is equivalent to A.

The interpretation of an expression in Lambda begins by creating an INTERP activity

containing the expression along with an empty environment and the initial destination of

location 0. By convention, the answer to a computation will be stored in location 0, so the

initial state of the computation is (!NTERP, E, p0. 0), ao. The machine, M. can now be

described as the following state transition function:

M(<INTERP, E, p, L >A, o) .
case E of
X - M(A. alp(x)/dere(L,o)l) ;: case of any identifier or constant

Xx. EN M(A. crfclosure(Ax. E1 ,p)/deref(L ,o)j)

(El E2 ) = letL :new(o)

L 2  new(a)

M(A(INTERP E1, p. LI )
(INTERP, E2 . p. L2 >*(APPLY, L, L 2 . L o)

(E E2 ) let L new(o) _ and all other binary numeric ops.

L2  new(a)
%I(,% -<INTER P. ElI , p. L I >

"<INTERP, E2 , L2 ><+.LL 2 L >, a)

iii
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(if E1 E2 E3 ) letL, :=new(a)

NI(A°<INTERP, E1 , p, L >

*<BRANCH, L I ,E2 ,E3 , p, L >, a)

M(<APPLY, L,, L2 , L3>.A, ) =

LetLR :=deref(L ,a)

if a(LR) = closure(Ax. E,p) then M(A(!NTERP, E, p[L2 /xL, L3 >, a)

i" a(LR ) = UNBOUND then M(A"<APPL Y, LR, L2 , L3 >, a)
else ERROR

M((+, L/, L2 , L3 )A, a) -

Let D, dere(L/ ,A

D2  deref(L 2,a)

if a(D 1 ) E N A a(D 2 ) E N then M(A, ala(D, )+ a(D 2 )/L3 D
else M(Ae< +, L, L2 , L3 >, a)

M(<BRANCH, LI , El, E2 , p,L >*A a)

Let L = deref(L ,)

if a(Lp) = UNBOUND then M(AG<BRANCH, LI, El, E2 , p,L), a)

if a(Lp) = TRUE then M(A<INTERP, E,, p, L>, a)

if a(Lp) = FALSE then M(A*<IIVTERP, E2 , p, L >, a)
else error

M(nil, a) = nil, a

The interpreter consists of five clauses, one for each of the types of activities, and one for

termination. The first clause handles the INTERP activities, performing a case analysis on

the syntax of the expression being interpreted. If the expression is an identifier, then it is

looked up in the environment, and either its associated location, or its literal value are stored

in the destination location. If the expression is an abstraction, then a lexical closure is

formed and stored in the destination. The interesting case is that of an application. When

an INTERP activity for an application expression is encountered. two new locations are

created in the store. One serves asa destination for the evaluation of the rator. and the other

as destination for the evaluation of the rand. 1 wo new activities are formed and enqucued

into the activity queue to carry out these two evaluations in quasi-parallel. Finally, an

4PPI, V activity is created and also enquCued. When additions are encountered, an -t- activity

is created along %ith two INTERP activities to evaluate the subexpressions. Addition

cxprcssions result in the creation of INFIERP activities for the argument expressions. and an

23- '
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§ 2.2 Extending Functional Programming with Logical Variables 24

+ activity to add the results. Lastly. the conditional branch results in an INTERP activity for

the predicate and a BRANCH activity to implement the conditional effect.

APPLY activities are interpreted by the second clause of M. When an APPLY activity is

dequeued, LI I is dereferenced. This is the location into which the rator of an application is

being evaluated. The rator must evaluate into a lexical closure. If the rator location, LR, is

unbound, then this activity cannot be processed, and so the irterpreter recurses after

" enqueueing the APPLY activity at the end of the queue for later processing. If the rator
location contains a iexical closure, then the processing of the application can proceed. The

environment is extended to map the formal identifier to the location L2, which is the

destination for the evaluation of the rand, and an INTERP activity is enqueued to evaluate

the body of the closed procedure in this new environment placing the result into the

destination of the APPLY activity. The interpretation of an APPLY activity does not itself

affect the store. Indirectly, the body of the procedure being applied is interpreted, and it is

given the destination of the APPLY activity to affect.

The + activities are interpreted by the third clause of M. When a + activity is dcqueued, the

operand locations, L1 and L2 , are dereferenced. If they contain integers, then the store is

updated to contain the sum at location L. Otherwise the activity just requeues itself. This

clause of the interpreter is not really a clause but is a clause schema. It is intended to show

how all primitive binary operators work, but the example is addition. All the binary

operators are strict: hence, when a + or other activity is interpreted, the operand locations

are dereferenced and then checked for values. If either operand is UNBOUND, then the

activity is just requeued, otherwise the addition or other operation is done and the result is

stored into the destination.

Conditional branching is handled by the BRANCH activity. When a conditional form

(if E1  E2 E3 ) is encountered in an INTERP activity, then a destination is set up for

evaluation of the predicate, E, by an INTERP activity. A BRANCH activity is also enqueued

to implement the decision. This BRANClt activity is interpreted by the fourth clause of the

interpreter. The predicate location. L1. is simply monitored for a boolcan value. Depending

24
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on the outcome of the predicate, an INTERP activity is enqueued to evaluate either the . -

consequent or the alternative of the branch, E1 or E2. The destination for their evaluationI2
is the location L, which is the destination of the INTERP activity containing the original

conditional expression.
V...

The final clause of the interpreter simply recognizes the termination condition. The

termination condition for M is that the activity-queue is empty. At that point the answer is

held in location 0.

2.2.2 An Example of Lambda Execution

Because of the complexity of the interpreter just shown, we will defer discussion of the

correctness for a later section and proceed with an execution example. Consider evaluation

of the expression (Ax.xw)Az.y. We know from inspection that the normal form of this

expression is y. To begin execution using the interpreter M, we start by forming an initial

INTERP activity, using destination location 0 (zero). The initial state of the machine is then:

<INTERP, (Xx. xw)xz.y, p0,>, i"

When execution begins this first INTERP activity is recognized by the first clause of M as an

application: hence, two new locations are allocated in the store, and three new activities

which are enqueued leaving the state of the machine as shown in figure 2-1.

Activity Queue Store

0 UNBOUND

.INTERP, Ax. xw, p, )

(INTER P, XZ. y, P0, 2) I UNBOUND

(APPLY, 1, 2,0) 2 UNBOUND

Figure 2-1: State of M after interpreting initial INTERP activity.

Next. the (INTERP Ax. xw. p0. ) activity is dequeued. Since this is an abstraction, the first

chuse of M simply stores it into the store as a lexical closurc. The simc behavior occurs for

the <I\TLRP. XZ.y. po. 2> actiit .giing the state shon in figure 2-2. At this stage. the

I'I'l.Y acti\itv is finally dequcued. and the second clause of M interprets it. The rator

location. 1. is location 1. which is found to contain a lexical closure of Ax.xw and p0 . An

.' .
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0 UNBOUND

(APPLY, 1, 2, O I closure(Xx. xw,p.)

2 closure(Xz. y,o 0)

Figure 2-2: State of M after interpreting two INTERP activities containing abstractions.

extended environment is formed which maps x to the rand location, which is location 2, and

an INTERP activity is enqueued to interpret the expression xw in this new environment, and

to write the destination location 0:

(INTERP, xw, p0(2/xl, 0>

The store is left unchanged by the execution of the apply activity. This new INTERP activity

is now the only entry in the queue, so it is dequeued and executed. Once again the

expression represents an application, so two new locations are allocated in the store, which

are locations 3 and 4. Two new INTERP activities are created, one each for the rator and the

rand of the application, having as destinations locations 3 and 4 respectively. Finally, an

APPLY activity is created leaving the state of the machine as in figure 2-3.

0 UNBOUND

I closure(Ax, xw, po)"-

<INTERP, x, po12/xl, D lsr(X.x~ 0
(INTERP, W, po[2/xI, 4) 2 closure(Az. y,p)"
(APPLY, 3, 4,0>

3 UNBOUND

4 UNBOUND

Figure 2-3: State of M after interpreting the first APPLY activity,
and the following INTERP activity.

The next step is for the interpreter to process the <INTERP', x, p0[2/x], 3> activity. The

expression x is an identifier, so the store is updated to have p(x) for location 3. p(x) is

location 2. so location 3 will now point indirectly at the contents of location 2. rhis

illustrates why the dereferencing store is needed. Rather than wait for the values of variables

to be produced, we just allocate storage cells for the values. and then copy pointers to these

26
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cells. The next activity is now dequeued. which is (INTERP, w, p0[2/xJ, 4>. In this activity,

w is an identifier, but p(w) is w. The store is therefore updated to have w in location 4. The

state of the machine after these activities is now given in figure 2-4.

0 UNBOUND

I_ closure(Xx. xw,p)"

<APPLY, 3, 4, 0> 2 closure(Xz. yp)

3 location 2

4 w

Figure 2-4: State of M after interpreting two INTERP activities for x and w.

Now the APPLY activity, (APPLY, 3, 4, 0, is dequeued and interpreted. The rator location is

found by dereferencing location 3 to get location 2. Location 2 is found to contain a closure

of Xz.y, and p0. An extended environment is formed. p0[4/z], and an INTERP activity is

formed using the body of the closure, y, this new environment, and the destination location
0: INTERP, y, p014/z], 0>. This activity is now the only activity so once enqueued it is

immediately dequeued and recognized as an INTERP activity of an identifier y. The store is

updated to contain p(y) at location 0, which is just y. Since there are no more activities,

execution stops here, and location 0 contains the answer which is y as expected. The final

state of the store is given in figure 2-5.

0 y

I closure(Ax, xw,pO0)

nil 2 closure(Az .y,po)

3 location 2

4 W

Figure 2-5: Final state of M after interpreting (Xx. xw)Az. y.

This example has shown the method by which the quasi-parallel interpreters will execute.
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Essentially, the source language is broken down syntactically into a co!lection of schedulable

activities. The activities are kept in a FIFO queue and are repeatedly, extracted from the

queue and interpreted. Activities often simply requeue themselves. They can also influence--

the store, and can create new activities.

2.2.3 Correctness of the Quasi-Parallel interpreter for Lambda

The quasi-parallel interpreter is equivalent to the sequential interpreter, W, shown earlier,

in that if an initial expression has a weak, head-normal form, then eventually, location 0 of

the store will be updated to hold that form. Informally, we can show that the interpreter is

determinate from the way the store is used. For every expression that is evaluated, a

destination location is allocated in the store which is uniquely used for the value of that

expression. It follows that no two activities ever have the same destination location. Since

the location is freshly allocated it must contain UNBOUND until it is updated; hence, by the

uniqueness of destinations, no location which contains a value other than UNBOUND is ever

updated. Finally, no APPLY, +, or BRANCH activity ever performs an application, addition,

or branch unless its required inputs have been stored. That is, these activities will wait

indefinitely for values to be written into the store. They simply requeue themselves if their

inputs are not available. No activity ever executes based on a location being UNBOUND;

hence, the time when the values are stored does not matter. This makes the values stored by

the interpreter independent of the order of the queueing of the activities. Determinacy of

the interpreter follows since the values stored by activities always extend the store by

changing an unbound location to a bound one, and that the order of the activities in the

activity queue does not matter.

The difference between the seque'ntial interpreter, W, and the quasi-parallel interpreter, M,

arises only with respect to termination. The sequential interpreter, W, will terminate more

often than M, since it is possible for ,an expression to create an infinite number of activities,

and yet produce a normal form. An example of this is. (Xx.,y.x) I ((.x.xx)Xx.xx).

This form has a normal form of 1. yet the quasi-parallel evaluation of the subexpression

(Xx.xx)Ax.xx will never tcminate. If we executed this expression on our parallel

28
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§ 2.2 Extending Functional Programming with Logical Variables 29

interpreter, we would expect that location 0 would eventually be updated to reflect the

normal form, but our termination condition that there be no more activities would never be

satisfied.
b '-..

2.3 The Delta Interpreter

Using a quasi-parallel interpreter like the one just shown for Lambda, we can give an1
interpreter for Delta. To implement Delta's primitive form of unification, we will use an

auxiliary function, bind:

bind(Ql, L2 - o) -

if E Loc then
Let D = deref(Q,,a)

D2 := dereIIL 2 ,.0 )
cas
o(DI )= a(D2 )them a

V(DI)= UNBOUND then alD2 ID, I
a(D = UNBOUND then aoD ID 2 -

otherwise ERROR
if Q, ( Loc then

L t D2 :=dereRL2 ,q)
case
a(D 2 ) = UNBOUND then a[Q/D 21

a(D2) = Q, then a

otherwise ERROR

Bind is similar to many unification algorithms. It takes either two locations, or a value and a
location. If given two locations it "unifies" their contents, or indirects one to the other.

Given a value and a location, bind "unifies" the contents of the location with the value.
Bind differs from unification because it does not recursively unify any sub-terms, and also

because there is no occurs check done to determine if a cyclic structure is formed. In the

interpreter for Delta, use of bind to manipulate the store causes identifiers in Delta to act

roughly like logical variables. Identifiers bound to locations can be affected using the -"

opcration. An important clarification about the equalit test in the bind definition is
needed. Whcn testing if two .alties arc equal. we are using syntactic equality. Hence Iwo
valucs are cquail if the) are the same identifier, integer, or if they arc txtually identical

closures.
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There are several properties of the bind procedure that we will use later. First, bind never

changes the value of a location other than from UNBOUND: once a location contains a value

or a location, bind can only read it. Second, if two locations containing unequal values are

given to bind, then an error occurs. The same is true if a value and a location are given to

bind. Bind always returns a store which is an extension of the input store in that the result

store always maps all bound locations to the same values, and may map some previously

unbound location to a new value.

We will now present the remainder of the Delta interpreter. To eliminate excessive detail,

we again interpret only the unsugared features of the language, which includes the Lambda

language as presented above, plus the extended features of (new), ==, and do. We will also

restrict the do form to have exactly two expressions within it: (do E1 E2 )"

1 2
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NiM(<INTERP, Eip, L> A, a)
case E of
I NI(A, bind(E, L, a)) :and other integers

x NI(A. bind(p(x), L, a)); also other identifiers

Xx ENI(A, bind(closure(Ax .E, ,pX L, a))

(E1 £2 l.et L new(a)
pp 2),

L2  new(a)

M(A*<!NTERP, E,, p, L, >

2 'NEP 2 p. L 2 >%<APPLY, L, L V2 L)>, a)

(+ E, £2E let L new(a) ;;and all other binary numeric ops.

L2 : new(o)
M(A (INTER P. E1 p, L >

e(INTERP,E 2,p. L2 >%< L1,,L 2,L , a)

(if E,£ E ) kItL, :new(*)

M(A*<IVTERP,, p, L>

*<BRANCH, L,, E2, E3, p. L, a)

(now) ~ M(A, a)

(do E, £ 2) ~ let L I new(a)
M(A*(INTERP, E,, p, L, )'(INTERP, E£2, p, L >, a)

Eur I E 2 ) M(A'(INVTERP,E,, p,L >&INTERP, E2,P, L %,a)

*M(<APPLY L, L2 L 3 >A. a)

LetLR := deref(L,,V)
if a(LR) closure(\x . £ .p) then M(A(INTERP, E, p[L2 1h,,>,a)

if a(LR) =UNBOUND then M(A*<APPL Y, LR , L2 L3>, a)
else error

[et D, := dereR(L, a)

D 2 := dere(L 2 'a)

if or(D 1 ) # UNBOUND A a(D) l UNBOUND then NI(A, bind(a(DI + o(D2 , L 3 ar))

else N1A(+, L I L 2 L 3>, a)

* N1((RRANCHL,.E £i ,L >A,a)=

LetL~ :=derefRLa)

if a(L) U LNBOUND) then '*1(&(BRANCII. L 1 E /1 £2 p. L X a)

ir a(//))= TRUE t hen %1, <IN TER 1. E,.p,.L)Xa)
if G(I /A F-;LSF Ilion Nl(A,<INVTFRP 2. p. L X. a)

eke error

* Nl(niI. a) =nil.a
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Although somewhat longer than the Lambda interpreter given earlier, the Delta interpreter .-

is very similar in structure. There are four primary clauses to the interpreter, corresponding

to the four different activities used by the machine. The first clause handles the INTERP

activities and does a case analysis on the syntax of the expression being interpreted. The

first 6 cases are nearly identical to the previous Lambda interpreter, except that the bind

, primitive is used to update the store.

The interesting cases are the language extension features, (do E E2 ), (now), and

(-= E! E2 . The (new) expression is interpreted by doing nothing at all. The intent of

(new) is to allocate storage, and this is achieved since anywhere that a (now) expression - .

appears, a "destination" location will already have been allocated. By treating (now) as a

no-op, we are using the destination as the allocated storage location. (do E, E2 ) is also

very simple. Its intent is to evaluate both E, and E2 , ignoring the value returned by E,"

and returning the value of E2 . This is achieved by simply allocating a destination for E,

and creating two activities to interpret Et into the new destination, and to interpret E2 into

the original destination, ( - Et E2 ) is the binding primitive. Its intent is that E and E

are constrained to have the same value, so that if either one of them evaluates to an

unbound variable, it will take on the value of the other expression. This is achieved by

creating two activities for interpreting E, , and E2 . but using the same destination for both.

The bind primitive then takes care of constraining the results of the two computations.

The APPLY, , and BRANCH activities are interpreted in exactly the same manner as in the

Lambda interpreter above.

The main result we would like to derive from this interpreter is the determinacy of Delta.

Informally, we would like to show that for terminating programs. the contents of the store is
determined only by the program. and not by the order of queueing of the activities. M as

presented above is a state-transition function: hence, by its nature, it must be deterministic.

However. we would like to show that Delta is deterministic even if the queueing of the

activities was not handled in the FIFO manner shown: we could then conclude that Delta

was a determinate language. and the detcrminacy was not just an artifact of a particular
scheduling policy for the activitics. We can conclude detcminacy because of the following:

32
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1. The bind primitive is the only way the store is ever affected.

2, The bind primitive never changes the value of a location other than from
UNBOUND, and there is no way for any operator to test for the value UNBOUND.

3. In a terminating program all activities are processed. Hence, an error causing
activity cannot be delayed indefinitely.

4. Conditional Branch activities wait for a value to be bound to the predicate
location.

5. Apply activities wait for a value to be bound to the rator location.

6. Binary operators wait for values to be bound to both operand locations.

Points 1, 2, and 3 indicate that when the store is updated, that update is only done as a

transition from UNBOUND to some value, and there are never two activities racing to update

a location with different values; this situation will always cause an error because all such

activities must execute in order for the interpreter to terminate. Points 3, 4, and 5 just show

that the only action that any activity takes based on a location containing UNBOUND, is to

requeue the activity for later processing. In other words the activities wait for values to

appear in locations: they do not race by checking for a location to be empty at a given time.

Consequently. the conditional branch activity evaluates only one of the two branches based

on the value stored into the predicate location, and not on when that value is stored. It

follows that the order of the queueing of activities does not matter, since the order of their

scheduling cannot affect the value stored in any location or the outcome of a conditional

branch. Since the order of the queueing does not matter, and the store is only updated in the

extensional fashion of the bind primitive, we can conclude that Delta is determinate and

that the interpreter. M. does not introduce any indeterminacy.

2.3.1 An Example of Delta Execution

Finally. to clarify the workings of the Delta interpreter we will show an example execution

otan inherently non-scqucntial code fragment similar to one given earlier:

33
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((Xi.( ( . '. ' i)

(do (- x 8)
(- x 5)))) (new)) should result In 67

This example is rather contrived, and serves only to illustrate the execution of the

interpreter, It is not intended to demonstrate a proper programming methodology for

use of (new) and --. The example creates an unbound variable, x, using the (new)

feature. It then uses x in an arithmetic expression and in a do form. The -- operation will

affect the value of the variable x so that the entire expression takes on a value of 67.

The initial state of the machine is:

INTERP,((Xx.(+ (0 x x) (do (we x 8) (- x 6)))) (now)), P0,O, a0

Step I of the execution is to look at this activity and to recognize that it is an application.

Two new locations (1 and 2) are allocated for the rator and rand of the application, and

three activities are produced leaving the processor in the state shown in figure 2-6.

OINTERP,
(Ax.(+ (0 x x) 0 UNBOUND

(do (as x 8)
x 5)))),P, l> I UNBOUND

<INTERP, (new),p 0 ) 2 UNBO
<APPLY, 1, 2, 0> 2 UNBOUND2-.

Figure 2-6: State of Delta Interpreter after Step 1.

Step 2 dequeues the next activity which is an INTERP activity of the lambda abstraction.

This is executed by storing a closure into destination location 1. The next activity is an

INTERP activity of the expression (new) so the activity is simply discarded. Step 3 is to

dequeue the APPLY activity. The rator location is location 1. which contains a closure, so a

new environment is formed which maps the identifier x onto location 2. The body

expression. (+ (0 x x) (do (-- x 8) (- x 5))) isenqueuedaspartofan INTERP

activity using this new environment, and the destination location 0. Since this is the only

acti ity. it is immediately dcqucucd and found to be a binary addition. Two ncw locations

are allocated (locations 3 and 4) and three activities are generated resulting in the state

shown in figure 2-7.

34
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0 UNBOUND

(INTERP, ( x x),p0 2/xi,3> 1 closure(,x.(+(. .. )),o)
(INTERP,
(do (-- x 8) 2 UNBOUND

x 6) ),p 0 [2/x, 4>U
+, 3, 4, 0> 3 UNBOUND..__ __

4 UNBOUND

Figure 2-7: State of Delta Interpreter after Steps 2 and 3.

Step 4 is to dequeue the activity involving the ( x x) expression. This is also found to be

a binary operator, so two more locations are allocated (locations 5 and 6) and three more

activities are added to the queue. Next the INTERP activity involving the expression

(do (-- x 8) (- x 5)) is dequeued, and found to be a do expression. One additional

location is allocated (location 7) and two activities are added to the queue resulting in the

state of figure 2-8.

0 UNBOUND

1 closure(x. (+(. )

(+ 3,4, 0> 2 UNBOUND

(INTERP, x, po[2/xI, 5>

(INTERP, x, p0[2/x], 6> 3 UNBOUND

<*, 5, 6, 3> 4 UNBOUND
<INTERP, ( x 8), p0 2/xi, 7>

(ITERP, (- x 6), p0 /xi, 4> 5 UNBOUND

6 UNBOUND

7 UNBOUND

Figure 2-8: State of Delta Interpreter after Step 4.

Step 5 dequcues an + acti ity. but since its operand locations. 3 and 4. arc not yet bound to

values. it is sinply requeued and the next actkity dcqucucd. This actiity is

(IxrLRP, X, p0[2/xj, 5> Ahikh executes by binding the dcstination location 5. to the location . ,.

35
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associated with identifier x (location 2). The next activity, (I.TERP, x, p412/x], 6>, is

processed similarly and results In the state given in figure 2-9.

o UNBOUND

I closure(Xx.(.(*...),)

2 UNBOUND
5, 6, 3>

(INTERP, (u x 8) p0j2/xj, 7> 3 UNBOUND

(INTERP, (- x 6), p0121xI, 4>
(+,,40>4 UNBOUND

5 location 2

6 location 2

7 UNBOUND

Figure 2-9: State of Delta Interpreter after Step 5.

*Step 6 is to dequeue the (*, 5, 6, 3> activity. Dereferencing location 5 gives location 2 which

is still unbound, so this activity is simply requeued. The next activity dequeued is

(INTERP, (asn x 8), p0[21xj, 7>. This activity is an equate operation, so two new activities

* are enqueued leaving the machine state as in figure 2-10.

0 UNBOUND

I closure(Xx. ((e..)p)

(INTER P. x 5), p0(Z/xI, 4> 2 UNBOUND

<# +,3, 4,0> 3 UNBOUND
Q, 5, 6, 3>

(INTERP, x, p012/xi, 7> 4 UNVBOUND

o , , ER P 8 ,p~ j / xj 7>5 location 2

6 In' vion 2

7 LNROU.VD

Figure 2-tO: SLuue of Delta Interpreter after Step 6.
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Step 7 dequeues the next activiy which is(ITERP. 6x ), p0[2/xj, 4>. This activity

represents a binary subtraction. so two new locations are allocated (locations 8 and 9) and

three activities are enqueued. The next activity is the <+,...> which will simply be requeued

as will the <0,....> following It in the queue. The next interesting state of the machine is

shown in figure 2-11.

0 UNBOUND

I closure(Xx.(+(. o

2 UNBOUND

(I.TERP, x, po[2/xJ, 7) 3 UNBOUND

<INTERP, 8, p0[2/xJ, 7)
<INTER?, x, p.12/xJ, 8> 4 UNBOUND

<INTERP, 5, p0j2/xJ, 9> 5 lcto
(8, 9,40

<+, 3,4, 0> 6 location 2
, 56, 3>

7 UNBOUND

8 UNBOUND

9 UNBOUND

Figure 2-11: State of Delta Interpreter after Step 7.

Step 8 dequeues (!VTERP, x, p012/xj, 7). This results in binding locations 2 and 7 in the

,tore, which means that location 7 contains an indirection to location 2. The next activity is

((V FEcRP, 8, p0j2/xI, 7>. and when it is interpreted, the bind primitive is called with the

value M wnd the location 7. Location 7 is dereferenced giving location 2 where the 8 is stored. -

This, is the -rucial step in the interpreution of this expresion. The binding of the value 8

A .itli location 7 ends up storing the 8 in location 2. whic:h is where all the other operators are

e\flcting to find the value of identifier x. The use of binding and dereferencing here is

Alllo\.inz the no)n-local effect of the -- operator to propagate back to the original location

-i~ en to the iinhoid \arillblc x. Our state is now gi~ en in figure 2-12.

In step 9 the nec\t tati tls work siniilarl to those of stcp S. The first aIctk it', A'quUCdIL
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0 UNBOUND

I closure(x. (+( )po)

2 8

3 UNBOUND
INTERP, x, p0l2/xj, 8> 3UNBOUND__,___._',_,_,

(INTERP, 5, p0[2/xI, 9> 4 UNBOUND

<-,8, 9, 4>
<+, 3, 4, 0> 5 location 2

, 5,6, 3>
6 location 2

7 location 2

8 UNBOUND

9 UNBOUND

Figure 2-12: State of Delta Interpreter after Step 8.

associates location 2 and location 8, and the second stores the value 5 into location 9 leaving

the state in figure 2-13.

Step 10: the <-, 8, 9, 4> activity has resurfaced. Dereferencing location 8, we get location 2

which is bound. Location 9 is also bound so the result of the subtraction, 3, is calculated and

the destination is updated using the bind primitive. The next activity is <+, 3, 4, 0> but it

will simply be requeued because location 3 is not yet bound to a value. The <', 5, 6, 3>

activity is dequeued next. This time locations 5 and 6 both dereference to location 2. which

is bound to the value 8. The product, 64, is stored in the destination location 3 using the

bind primitive. Once this is done, the only remaining activity is <+, 3, 4, 0> which will now

be interpretable since locations 3 and 4 now contain values. The sum. 67. is written into the

destination which is location 0. Since there are no more activities at this point, execution

tenninates resulting in the final state given in figure 2-14.

In summary. the qucucing and dequeucing of activities allows the interpreter to simulate a

parallel execution by essentially time-sharing among the different subsections of the original

expression. The use of the bind primitive and the dereferencing of locations in the store

38
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0 UNBOUND

*I closure(Xx.(+(. o

2 8

3 UNBOUND

8, 9, 04 UNBOUND

(5, 6,3> 5 location 2

6 location 2

7 location 2

8 location 2

9 5

Figure 2-13: State of Delta Interpreter after Step 9.

0 87

I closure(x.(e(. .

2 8

3 64

4 3
nil

5 location 2

6 location 2

7 location 2

8 location 2

9 5

-igure 2-14: Final State of Delta Interpreter

allows thc constraint placed by the (u=L' E2 )operation to propagate to the unbouind

xariablcs involved.
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2.4 Programming in Delta

As in Lambda, our functional language, Delta is devoid of any data-structuring features.

However, Using the new feature and the tuple technique shown previously for Lambda, we

can easily construct a form which allocates a specific length tuple of unbound variables:
(let ((allocate-4-tuple (X(n)

(tuple
(now) (now) (now) (new))))) make a four tuple of unbound variables r................) \-

Conceptually, it is very easy to generalize this technique so that the form (allocate n)

returns a tuple of length n of unbound variables. As for Lambda, we will assume this

extension exists, along with the function select described earlier, replace is not needed

as a built-in function in Delta. since it can be written within the language. Intuitively, using

so 1 ect on a tuple of unbound variables should select out one of the variables in such a way

that using -- on it will affect the original tuple. For example:
(let ((x (allocate z))) ; allocate a 2 tuple

(let ((z (select I x)) ; z is first element
(w (select 2 x))) w is second element

(do (a. z 6) equate z and 5. This affects x.
(-- w 7) equate z and 7. This affects x too.
x))) ; return the updated tuple.

the result should be the tuple 6,7.

This effect is achieved in our interpreter for variables in closures because of the bind

primitive and the use of dereferencing, so we will assume that this same behavior appears

for allocated structures.

The crucial difference between Lambda and Delta should now be apparent. (aI locate n)

produces an object which can be distributed to several parts of the program for production

or consumption of the variables in it. Tuples in Lambda must be produced all at once and

can only be distributed for consumption.

2.5 Flat Structures in Delta •--9

At this point we can look at the additional expressive power that Delta has over Lambda by

writing und analyzing the two test programs: inverse-permute, and tree-append. The ability

to create unbound variables and constrain them later allows a much more efficient and

natural version of invcrse-pcrniute:

40

IlU

40 .. -
- ~ - - *-.-.-.

S S .a.L.. . . s. a '. - " 



14 Ilk IV %I

2.5 Extending Functional Programming v ith Logical Variables 41

(lotrac
((Iterate-loop (X(Index A B)

(if (> index (tuple-longth A)) nil
(do (-- (select index B) (Select (select index A) A))

(iterate-loop (+ index 1) A 8)))))

(Inverse-permute (X(A)
(let ((B (allocate (tuple-length A))))

(do (Iterate-loop 0 A 8)

)))))

(Inverse-permute (tuple 2 3 5 4 1))) ;;; perform the algorithm.

the answer Is the tuple 3.5,1.4,2.

This program now resembles an imperative implementation using assignments much more

than the functional version since almost every aspect of it is using the non-local binding

effect of the -- operation. The Inverse-permute routine simply allocates an array of

unbound variables of the appropriate size, and then calls Iterate-loop to fill them in with

appropriate values from the array A. The inner it erate-l oop procedure actually performs

O(n) non-local binding operations, so this program requires only O(n) time and space.

However, the program is not performing assignments as it would if it were written in

Fortran. since we only assert equality constraints on the variables.

In summary, the loss of referential transparency caused by introducing (new) and -- into a

functional-style language results in a language with a useful form of non-local effect which

allows flat structures to be manipulated much more efficiently. The language remains

determinate.

2.6 Deep Append in Delta

Although it is not immediately apparent. allocate and =- will not allow us to write a

better program for the tree append problem. Unfortunately. there are ceruin programs

which still cannot be expressed in Delta. namely those in which the essence of the algorithm

is to check to see if a location is unused. and if so. to acquire and c\plolt that location. To
andcrsta-d this limitation, let us tr to write the program in an imperul/ve lisp language.

I his l1nlguaLK Ail be ' n tacticall. e\actl\ like our functional hangu:Igc. I amhda. but with

addcd ,Lssivnmcnt operators. Once igain LSSume that we have a tuplC constructor called

41
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make-node which makes a node of a tree containing a left-subtree, rght-subtree,

and node-value, where the corresponding field of a node is selected using a function with

the same name. The fields will also be assigned using the forms: set-left-subtree,

set-right-subtree. and set-node-value. We will again use nil to represent the

empty tree. and the empty list. An efficient tree append program will need 0(n) tree nodes

to represent the tree. and will not perform any copying of the tree during its construction.

Appending each integer to the tree requires 0(log n) operations on average or 0(n)

operations in the worst case. The best we can hope for then is 0(n log n) time and 0(n) space

for tree append. The imperative version of the program is then:
(letree

((append-Integer (A(lnt tree)

appends an integer to an existing tree.

(if (null? tree) ;; the first case.. tree is empty

(make-node nil nil int)

(do
(if (< Iet (node-value tree)) ;; else compare to current node value

(set-left-subtree tree ;; update left subtree
(append-integer int (left-subtree tree)))

(set-rlght-subtree tree ;; update right subtree
(append-intoger tnt (right-subtree tree)))

tree))))) ; return the tree as the answer.

(tree-append (X (list-of-Ints tree)

;; appends elements of list one at a time.

(if (null? 1ist-of-ints) tree done, so return the finished tree.

(tree-append (cdr list-of-ints) append one and recurse
(append-integer (car list-of-ints) tree))))))

(tree-append (list 4 3 6 2 6) nil)) ;now try It out.

Only the append-integer routine is different from the program as written in the Lambda

language. Ihe append-Integer routine tests tree to see if it is null. and if so it has

reached a leaf of the tree. so it crcates a node containing the integer and returns it. If tree

is not null. then it must be a tree node. so the procedure compares the value at that node of

42
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the tree with the integer, int to determine which subtree it should be appended to. A

recursive call to append-Integer will return a tree node, and the appropriate Field of the

current tree node (the value of the variable tree is replaced with the returned node. For

example, if the tree is currently only a single root node with both left and right subtrees null, A

then appending another integer will simply replace one of these null subtrees with a newly

created tree node. Clearly, this program exhibits the storage efficiency we want. It allocates

only enough nodes to hold all the tree elements, and updates the pointer structure to

assemble the tree. It achieves this by reusing the storage locations of the tree nodes.

Originally they hold nil 1, to signify empty subtrees, but they are later updated to contain

new subtrees. As we mentioned in the introduction, the assignment statements and reusable

store of sequential programming languages make it difficult or impossible to expose

parallelism in programs. On the other hand, we would like to achieve this same level of

storage efficiency in our parallel programming language.

Unlike an imperative language which reuses storage locations, the Delta language can

allocate new locations as unbound variables and later define them only once. Because of

this no additional dependencies are introduced, since there is no reuse of locations.8The

behavior of the tree nodes in the imperative program above is to start with value ni 1, and

then change once into tree nodes. This parallels to the way logical variables work, which

begin as UNBOUND. and later take on values. As a result, it is attractive to attempt a Delta -. .

program for the deep append program which uses the same algorithm as the imperative

xersion. which is essentially this: Build the tree so that the leaves of the tree are always

unbound variable& When appending to a leaf simply equate an existing unbound leaf to be a

new node containing its own new unbound leaves. This strategy leads to a program for

appending a new integer into the tree which is something like:

MR~ ~ ~~~hs Idcicti 110 11,~ IV CS'~ I~~'A( M mId rck on gairh~ige collictorS to reclaini Storige 'A hin it is no
SI, nccr KLac5 ,thi2 ,\ sir~c If pt g.irh,gic c lcction tch niques is u und in (121
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troc % '
aeppend-integer (X(int tree)

appends aninteger to an exlsting tree.

(if the tree is an unbound variable check if this is unbound a- a leaf.

(do
(=- tree (make-node (now) (now) Int)) add the now node at the leaf
tree) return the tree as answer

(if ( tt (node-value tree)) else compare to current node value

(append-integer tnt (loft-subtroo tree)) :append to loft

(append-integer nt (right-subtroo tree))) ;or to right for effect

tree)))) ,; return the tree as the answer.

The reason this program doesn't work is that we need to check if the tree is an unbound

variable to decide whether we have reached a leaf and can now append a new node. If the

tree is bound, then it must be another tree node, so we must descend recursively. There is

no test in the Delta language which allows us to check if a variable is unbound. All the

constructs in Delta except -- require that vanables are bound. The constructs of Delta

allow us to create unbound variables, to constrain them, and to equate them by use of the

operator, but there is no way to tell if an expression represents a bound or unbound

variable.

Logic programming languages can express the deep-append problem efficiently, and still

avoid assignment statements. If we look at the Prolog [81 version of this program, we can

see how this is achieved:
tree-append(E). Tree).

troo-append([IntIR ]. Tree)
append-integer(Int., Tree)

& tree-append(R, Tree)
& close-tree(Tree).

appond-integer(Int, node(Left. Right, Int)).

append-integer(Int. node(Left., Right. Value))

Int < Value
& append-lnteger(Int, Left).

append-Integer(Int, node(Left, Right, Value))

Int >- Value

& append-integer(Int, Right).

cloo-troe()."-."

4+
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close-tree(node(Left, Right. Value))
close-tree(Left)

& close-tree(Right).

?:- tree-append([4. 3. 5, 2. 8). Tree).

The program consists of three definitions: tree-append, append-lnteger, and

close-tree. Append-integer is the important part of the tree append program. The

first clause succeeds at appending the integer to the tree if the tree is an unbound logical

variable. In that case, the tree is unified with a node which contains the appended integer

and two unbound variables Left and Right which are the subtrees of the node. If the tree

is already bound to a node containing a different integer then the first clause fails and the

second clause is tried. The second and third clauses of append-integer handle the case of

recursing down the left and right branches of the tree respectively. The interesting behavior

here is that the program essentially tests to see if the tree is an unbound variable, and if it is,

it exploits that fact immediately by unifying the variable with a new node and succeeding in

the first clause. If the tree is not an unbound variable, then the unification fails and the

other clauses are tried. The unification process either succeeds by exploiting an unbound

variable, or fails indicating that that variable was already in use. This is tantamount to

having a test for UNBOUND which can be used to give a result for a conditional branch;

however, it combines it neatly as an atomic operation with a binding of the variable. Prolog

can attempt unifications conditionally, and the backtracking mechanism allows it to behave

in different ways depending on the success or failure of the attempts. Close-tree is used

after the appending of all the integers is complete: it recursively descends the tree unifying

all the unbound "ends" with n 1l. This is done by attempting to unify each tree node with

nil, and branching to the second clause of close-tree to recurse when the unification

fails. Note that close-tree is done only after the appending of all the integers has

completed. according to a Prolog-style execution order.

Looking back at the semantics for Delta. we see that the -- operator. which implements

Delta's trivial sort of unification. does not behave in a conditional fashion. (-- E1  E2 )

cquates F/ and F, by giv ing them the same destination location: hence. they arc "unified" . -

b the hind prrmitc. If the do not "unify" in this way. a run-time error occurs. In

c mctwon. the amaill amount of' "logical" hehaior that ariables in Delta lia e does not
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provide Delta with all the expressive power of a logic programming language. Our next

extended language, Eta, will allow us to exploit some of this conditional behavior of

unification within the operational framework we have already set up. It will not embody

the automatic backtracking or unification of Prolog, but will glean enough of the

conditional binding behavior to be able to solve the deep-append problem efficiently.

* 2.7 Input and Output from Delta Programs

By adding logical variables to a functional language we seem to gain the expressive power of

streams for performing input and output [41. 41. In the language IC-Prolog [11, streams are

just lists containing logical variables. Delta will also be able to implement streams in this

way.

The built in function input can be assumed to yield a list of all inputs from the user's

terminal as typed a line at a time. The list is made up of cells which are actually made by an

(al locate 2) form evaluated in Delta. The built in function output will perform just the

opposite. It will take as argument a list of lines to be printed on the output device. The

pointer structure of a list will be used to constrain the order of actual input or output events.

The key observation is the following. As one attempts to read deeper and deeper into the

input list, one cannot read farther than the part that has been defined by the actual input

system, and hence the program's operators will wait for the physical inputs to occur. Output

is symmetric to this. The output system cannot read deeper into the output stream than the

user's program has defined. The ability to leave an unbound variable at the "tail" of the

output list allows output to be done in a very natural almost imperative fashion.

For example. let us assume we want to write a program to simply echo the lines typed to the

input:
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Input List Output List

Secon LineSecond Line

Third Line

Terminal appends to User program appends output

unbound "tail" here to unbound "tail" here

Figurc 2-15: Terminal input/output on streams with "unbound tails".
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(letrec ((echo-loop (X(input-list output-1lst)
(do
(=- output-list (allocate 2)) new cell for output list

(let ((first-line-In (car input-list))
(rest-input (cdr Input-list))
(first-line-out (car output-list))
(rest-output (cdr output-list)))
(do

(=- first-line-out first-line-in) echo the line.
(echo-loop rest-input rest-output))))))) repeat

(let ((input-list (input)) r,

(output-list (new))) ;; initially unbound since we're producing it.

(do
(Output output-11st) ;: give it the unbound and let It wait until

we get around to defining it.
(echo-loop Input-list output-list))))

The program consists of only one routine, echo-loop, and a main body. The main body

first calls the input procedure and binds the variable input-1 ist to the result. Successive

car's of this list will be successive inputs. The variable output-list is introduced as a

unbound variable, and the built-in procedure output is called on it. This will output

successive car's of output-list in order. Echo-loop simply takes the input and output

lists, and by defining the unbound variables it defines successive car's of output-I st to

be -- , that is, equated to the successive car's of input- ist. The behavior of this program

is shown in figure 2-15.

This program has a considerably simpler representation in the IC-Prolog language:
7- input(X) & output(X).

In IC-Prolog, variables can stand for streams. In this example, the variable X stands for the

entire history of all input. By providing X as an argument to output, the program is

ensuring that the output is the same as the input. In Delta, this technique for I/O can be

generalized into a general communication technique between sections of a program. One

part can produce a list while another section reads it simply by sharing a variable which

represents the list. Since the choice of sections of the program doing this may be input

dependent. a dynamically evolving network of communication can result. The implications

of this for programming methodology are beyond the scope of this thesis.
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Chapter Three

Conditional Binding of Logical Variables

3.1 The Eta Language

We have seen that Delta has some advantages in expressive power over the pure functional

language Lambda. Now we will undertake a further extension to the language, and we will

call the further extended language Eta. The Delta language has some of the properties of

logical variables; however, it has no notion of success and failure of an equate operation.

We would like the ability to attempt to constrain a variable to have a particular value, and to

branch conditionally based on the success or failure of the try.

The additional feature of the new Eta language is the -?. operator. *?. is similar to -- in

Delta, except that it does not cause an error if its two argument expressions are not

"unifiable". Rather, it returns true or false depending on whether such an operation

succeeds or fails. -?- will be able to have a non-local effect if its first argument is unbound,

by binding this first variable to the value of the second, and returning true. Suppose x and -.-

y are unbound variables created using the (new) operation, then:

(.- x 1) true and x gets the value 1,
(-7- 1 2) false,
(U?- x y) can't be reduced.

Note that the -?- operator is not symmetric like == was in Delta: it has a definite left-to-

right behavior.9 ?- should be thought of as performing a conditional binding. The binding

available in Delta did not have this conditional behavior, and could be called absolute

binding. The -- operation can be thought of as a clean way to do what operationally

amounts to a single assignment for effect. The distinction between absolute binding, and

conditiond binding is important since indeterminacy is introduced into the language. For

Scntmplc. the 1l1lo" ing program has an indeterminate result:

Th , nc-cit.tcd h the dtc: H I the oper r Ii nI scnmnltiltic en li ter.
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(let ((x (now)))
(dIO

(.?- 30)

X))

This program returns either 20. or 30 as the answer depending on which -?- operation is

performed First. but it does not make use of the boolean values returned by the -?-

operations. In order to program using -?- we will also need a construct: (after E I E2 )

which is much like the do construct in Delta. Both E and E are evaluated, and the value .*-

of the expression is the value of E2 . However, the after construct causes the forms to be

evaluated in sequence: that is, E2 is not evaluated until Ehas returned a value.

It is important to realize that Eta is a much simpler language than a real Logic Programming

language in some respects. It does not include full unification or don't-know non-

determinism. For example, a Prolog program which is not as easily expressed in Eta is:
member(X. [XIYI).
member(X, [ZIYJ):- member(X.Y).

sum-j0(X,Y.Set):- mombor(X,Set), member(Y,Sot), sum(X.Y,10).

7t- sum-10(A, !1, [1, 3, 5. 4, 53). .

This program consists of two definitions. The first is the standard Prolog definition of

member which determines if an element is a member of a list. The second is called sum-lO,

which given a set represented as a list, produces two numbers X, and Y, which are in the list,

and whose sum is 10. This program uses a common Prolog programming paradigm,

generate and test. The two calls to the member predicate in the definition of sum-lO are

generators of members of the set- and the test is the call to the predicate sum. Prolog uses

automatic backtracking to enumerate the members of the sets, and will ultimately try all

pairs of elements to see if their sum is 10. To write this program in Eta, one would have to

write a generate and test procedure, essentially implementing what is built into the Prolog

interpreter.

On the other hand. since Eta allows higher-order procedures. it has some expressive power

that is not present in current Logic-bascd languages. which are all essentially first-order. For

example. it is possible to write the reduce function:
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(letrec ((reduce (lambda (f)
(lambda (list)
(if (null? (cdr list)) (car list)

(f (car list) ((reduce f) (cdr list))))))))
(let ((sum-list (reduce +)))

(sUm-list '(1 3 6 7)))) answer is 10

Reduce is a higher-order function. It takes a binary operator as its first argument, and

returns a function which given a list of values, inserts that operator between the values of

the list. In the example, reduce is used to build sum-i 1st. which adds up all the elements

of a list. The elegance and power of this programming style have been described in [35, 19].

Some higher-order features can be incorporated into Prolog [40], but their status with

respect to the foundations of logic programming is questionable.

3.2 Operational Semantics for Eta

To understand exactly the additional power that the -?- operator gives us, we will next

present a quasi-parallel interpreter for Eta. The interpreter is much like the Delta

interpreter, however, there are important differences. The language is no longer

deterministic, so we must make some accommodation for this in our interpreter. The Delta

interpreter broke the program down into activities, which were placed into the activity-

queue, a FIFO. For Eta, we will allow any activity to be selected from the queue by making

the N1 interpreter non-deterministic. We will do this by adding an extra rule for M:

NI(F.A, a) = M(A.F, a). This rule is applicable any time there is more than one activity in

the queue. and it allows the queue to be shuffled by moving an activity to the rear without

looking at it. To insure that programs terminate, we will still require that every activity is

eventually selected for interpretation by M: that is, we do not leave any activity unprocessed

for an unbounded amount of time.

NMost o" the interpreter is identical to that given for Delta and is omitted: only the additional

clauses are shown here:
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(< INTERP, E, p, L >A, a) = "!I"
case E of '

the first 8 cases are the same as for Delta

* (.?= E E ) letL new(a)
L2  new(a)

M(A.(INTERP, E,, p. L, >(INTERP, E2 , p, LI )>=?=, L1 1 L2 L>, a)

(after El E2 ) letL := new(a)
M(A.(INTERP, E,, p, LI >*(WAIT, LI , E2 , p, L>, a)

M(< =?=, L! , L2 L3>*A, a)--._ .

Let OD := deref(Li, a)

D2 := deref(L 2 , a)
if a(D2 ) = UNBOUND then M(A0(=?=, L! , L2 , L3 >, a)

if a(D/) = UNBOUND then M(A, alL2 / L l tru./derefl L3 , a)))

if a(Di ) = a(D2 ) then M(A, altruedere(L3 , )l)

else M(A, alfa se/dereffL 3, )l)

M(( WAIT, L 1, E, p, L 2 >A, a)=

if a(deref{L, a)) - UNBOUND then M(A .(WAIT, L, E, p, L2 >, a)

else M(A.lNTERP, E, p, L2 >, a)

2/M(FOA. a) =M(AOF, a)

The Eta interpreter has two new types of activities: a =?= activity, and a WAIT activity.

These are created by the first clause of M when the syntactic forms (-?- EI E2 ) and

(after E, E2 ) are encountered in INTERP activities.

The---= activity has three locations associated with it. L is assumed to evaluate into an

unbound variable: that is. it is assumed to end up referencing an unbound location. L2 is

assumed to eventually receive a value, and the activity waits for it to become bound to a

value, simply requeueing itself if L is unbound. When L takes on a value, then an

attempt to bind it with Ll is made. If this attempt is successful, then L3 receives true.

otherwise it gets false. Non-dcterninism appears in thc interpreter since several of these -

-?= activities can exist in the qucuc simultaneously. If several of these are enabled. that is.

they have their respective L2 locations bound to values, and if they share a common

25
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location for L, which is unbound, then whichever of the activities is dequeued First will

cause true to be stored in its destination L3 . All the others will store false in their

destinations. Essentially, several =?= activities can race to bind a common L, location.

Whichever is scheduled first will succeed and store true; the others will fail and store

false. The last clause of the interpreter, M(F.A, a) = M(AF, a), introduces real non-

determinism in the scheduling of activities. _

The WAIT activity implements the semantics of the after construct. It keeps an expression,

environment, destination, and also a trigger location. When the trigger location becomes

bound, then the WAIT activity simply enqueues an INTERP activity to interpret the a.

expression into the destination. If the trigger location is unbound, then the WAIT activity " "

just requeues itself to be retried later.

3.2.1 An Example of Eta Execution

To see the non-determinism that this interpreter exhibits, we can interpret the expression

presented earlier. Once again, this example is too trivial to show any programming

methodology, but is sufficient to illustrate the operational capabilities of Eta:
(lot ((x (now)))

(do
x 20)

(-?a x 30)
x))

This expression can be "desugared" so that our interpreter will execute it directly:

((Ax.(do (-?a x 20) (do (- x 30) x))) (now))

The initial state of the interpreter would then be:

(INTERP,((Ax.(do ( x?. x 20) (do (-?a x 30) x))) (new)),p o.0),o 0

Evaluation of this initial activity will lead to allocation of two new locations (1 and 2), and

the creation of three other activities:

(INTERP,(Ax.(do (a?- x 20) (do (*?. x 30) x))).p0 .I)
<INTERP. (new). pO 2 )

(APPLY, 1. 20>

The first two actikities will exectte when they are selected from the qucuc, and will result in

the storing of a closure of the lambda cqprcssion into location 1. Interpreting the APPLY -
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activity will result in creating an extended environment, p012/x], and an activity for

evaluating the body of the expression:

<GvTERP,(do (u?- x ZO) (do (a?& x 30) x)),p0 l2/xl,O>

This is the only activity at this point, so it is dequeued and interpreted. Since it is a do form,

an additional location is allocated (location 3), and two activities are enqueued:

<INTERP,(-?s x 20), po2/xl,3>

(INTERP,(do (-?. x 30) x),poi2/xl,O>

Thus far, the only operation that has affected the store was the creation of the lexical closure

which was stored into location 1. Since our interpreter now allows reordering of the activity

queue, let us next select the INTERP activity of the do expression. Once again a new location

is allocated (location 4), and two new activities are generated, leaving the queue of activities

as:

(INTERP,(-?u x 20), p0l2/xl,3>

(INTERP,(-?- x 30), p0 2/xl,4>
<INTERP, x, p0[Z/xl, 0>

Selecting next the activity involving the expression (-?- x 20), an interpreter clause

specific to the Eta language is now used. Two new locations, (5 and 6) are allocated, and

three new activities are created:

(INTERP, x, p012/xl, 5)
(INTERP, 20, p0lZ/xl, 6>
< (= =, 5,6, 3> : -..

Similarly, when the activity involving (-?- x 30) is selected, then two more locations are

allocated (7 and 8). and three more activities are created leaving the activity queue with:

<INTERP, x, p012/xl, 5>
(INTERP, 20, p0 2/xl, 6>
< =?=. 5,6,>

(INTERP, x, po[Z/xl, 7>
<INTERP, 30, p /xl, 8>
<=?=,7,8,4>
(INTERP, x, p012/xi, 0>

Because of the non-dceterminism in our interpreter, and for clarity, we will next select the

activitics which e~aluate constants. The activity

<VNTLRP. 20. p012/xl. 6>
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will simply result in the value 20 being stored in location 6 by the bind primitive. Similarly.

the activity involving the 30 will result in the value 30 being stored in location 8. This leaves ,

the state of the interpreter as shown in figure 3-1.

0 UNBOUND

I closure(Xx. (do... ),Po)

2 UNBOUND

3 UNBOUND

(!NTERP, x, p012/xj, 5> 3
=.=5, 5,6, 3> 4 UNBOUND

<INTERP, x, pO[2/xl, 7>
5= ?=, 7, 8, 4> 5_UNBOUND_-_

(JNTERP, x, p0[2/x], 0> 6 20

7 UNBOUND

8 30

Figure 3-1: State of Eta interpreter'after storing constants 20 and 30.

We will next select the activities which interpret the expression x, since they influence only

the store. In each case, the activity results in indirection of the destination location to the

location associated with identifier x which is location 2. Hence locations 5, 7, and 0 will all

end up containing references to location 2. The state of the interpreter is then as show in

figure 3-2.

At this point, the only two activities left are both ? activities. Furthermore, both are

enabled in that whichever one is selected next for execution will in fact execute. Non-

deterministically let us choose the <=?=, 7, 8, 4> activity for execution. Looking back at the

interpreter clause for =?= activities, we dereference locations 7 and 8 to get locations 2 and

8. Since location 8 is bound to the value 30. we update de store so that location 2 refers to

location 8. 13% dcrefercncing. location 2 now refers to the value 30. We al.o update location

4 to contain the ailue true. 1 his lea~cs the state as in figure 3-3.
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0 location 2..'.'.',

I closurel(Xx. (do ... ),po )

2 UNBOUND

3 UNBOUND

<=?=, 5,6, 3> 4 UNBOUND
(=?=, 7, 8, 4>

5 location 2

6 20

7 location 2

8 30

Figure 3-2: State of Eta interpreter before executing =?= activities.

0 location 2

1 closure(Xx. (do...),pd

2 location 8

3 UNBOUND

<=i=, 5,6, 3> 4 true

5 location 2 .._

6 20

7 location 2

8 30

Figure 3-3: State of Eta interpreter after executing first =?= activity.

Finally. the second =?= activity is executed. Locations 5 and 6 are dereferenced to give

locations 8 and 6. Since location 6 is bound to the value 20 and location 8 is bound to the

value 30. the activity compares these values and stores false in the destination location 3.

At this point execution terminates since there arc no more activities. The final state is given

in figure 3-4.
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0 location 2

1 closure(Xx. (do ... ),p)

2 location 8 "-'

3 false .' ,

nil 4 true

5 location 2

6 20

7 location 2

8 30

Figure 3-4: Final state of Eta interpreter.

If we had selected the =?= activities for execution in the other order, the final state would

differ since location 2 would have been bound to location 6 instead of location 8.

Dereferencing location 0 gives location 8 which contains the answer value of 30.

This example is quite trivial, and does not make use of the after feature of Eta for

controlling the non-determinism. It should be clear, however, where the non-determinism is

introduced into Eta programs. The next section will exhibit more elaborate Eta programs,

which are too large to analyze at the level of detail just shown, but they will illustrate

practical ways to use the non-determinism and conditional binding effect of the --u

operation.

3.3 Deep Append in Eta

The absolute binding effect of-- operations in Delta allowed us to efficiently solve the flat

structure problem. but not to adequatcl solve the deep append problem. We will now look

at ho the further cxtended capabilities otL a proidc a solution to deep appending. As in

Dclta. wc ' ill contintc to use the san model ol daia structurcs as tuplcs M hich can contain

unbound %ariablcs. The addition of the -?- operation to Delta will allow us to write a
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better tree-append program, which works more like the Prolog example given earlier. As in

our original tree-append program in Lambda, we will use a tree node tuple built with the

constructor make-node. This constructs a vertex of the tree having a left-subtree, a

ri ght-subtree, and a node-val ue which are selected using functions of the same names.

n 1l will represent the empty subtree or the empty list. The regular list operations of car,

cdr, and 11st are also used.

((tree-append (A (list-of-int, tree)
(itf (null? list-of-ints) tree ; done, so return the finished tree.

(after

(append-intoegr (car list-of-Iats) tree) ; append one integer

(after ; then

(tree-append (cdr list-of-ints) tree) ; append the rest

then close off the tree. : then

(close-tree tree)))))) ; close off the tree

(append-integer (X (tnt tree)

(if (-?- tree (make-node (new) (new) int)) nil ; done

(if (( int (node-value tree)) ;; compare to tree root
(append-Integer tnt (left-subtree tree)) ; put it Into left
(append-Integer tnt (right-subtrea tree))) ; put it into right

(close-tree (A (tree)
(if (-?e tree nil) nil ; done

(do
(close-tree (left-subtree tree)) ; close left
(close-tree (right-subtree tree))))))) ; close right

(let ((tree (new))) create an unbound variable as the tree.
(do (tree-append (list 4 3 5 2 6) tree) ; append the list

tree))) , return the tree

Like the Prolog version given earlier, this program is broken into three sections:

tree-append, append-integer, and close-tree. The key feature of this new deep-

append program is the use of the =7. test in the append-integer routine. *?- is used to

test if the tree is equal to the new item that we want to append to the tree. Because of the

ability of append-integer to leave unbound values in the records it appends. the program

can build the trcc from the root downward, never having to copy tree nodes as the

functional version did. so the storage rcquirenicnt is only O(n). Unlike the Prolog version,
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however, the Eta program must enforce its own sequentialities. The after constructs used

in tree-append are needed to insure that the tree is built in the proper order, and that the

tree is completed before the close-tree routine goes about trying to "seal up" the

unbound variables contained in the tree.

Using -?- in the above program has reduced the copying overhead, but in making the

program storage efficient we have also made it sequential by use of the after construct. It

is interesting to look at a different version of this program. Let us introduce a variation on

the af ter construct: (afterZ E, E2 E3 ). After2 will work similarly to after. The

value of the expression is the value of E3 ; however, instead of waiting for the evaluation of

just a single expression we will evaluate E, and E2 in quasi-parallel and wait for both to

store a value in their destinations. It is easy to augment the state transition machine M to

handle this operation:

M(< INTERP, E, p, L >A, a) .
case E of

(afterZ E, E2 E3 ) =letL := new(a)

L :new(a)
M(A"INTERP, E1 .p, Ll >

• INTERP, E2 , p, L2 >
*<WAIT2,LL 2,E3 ,p,L>, v)

M(< WAIT2, Ll, L2, E, p, L3 >OA, a) .

it a(dereRlLI, a)) = UNBOUND V a(dereIRL 2 , a)) = UNBOUND

then M(A"< WAIT2, L, L2, E, p, L3 , a)

else M(A<INTERP, E, p. L3 >, a)

The first clause here shows the decomposition of the form (after2 E, E2 E3 ) into

three activities. The first two are to interpret the subexpressions E, and E2 in quasi-

parallel. The third is to wait for both of these to store their values into their respective

locations, and then to evaluate E.. This is done by means of the new WAIT2 activity. The

interpretation of WAIT2 activities is given in the second clause. We cin now change the

definition of tree-append to use the afterZ construct.
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( etrec,'''-

- ((tree-append (X (list-of-ints tree)
(If (null? list-of-Ints) tree done, so return the finished tree.

(afterz

(append-Integer (car list-of-ints) tree) append one integer
(tree-append (car list-of-ints) tree) append the rest

then close off the tree. ; then

(close-tree tree)))))) close off the tree

*- This new version will exhibit very different behavior. Instead of appending the integers to

- the tree in sequence, the recursive call to tree-append will unfold creating a potentially

large number of concurrently active versions of append-integer. These will all be

attempting to bind the "root" of the tree simultaneously, but according to the semantics of

*?= only one of them will succeed. The remaining active processes will race to bind the

subtrees of the root, and so on. The actual tree which is produced will be a binary search

tree containing all the elements of the input list; however, it will have been built in a non-

deterministic order. The program now has more parallelism since many of the concurrently

active processes can be overlapped as they compare with integers that have already been

appended to the tree, but this extra parallelism has also made the program indeterminate.

As an answer we get one of a number of possible trees of integers. It seems that the

indeterminacy here is of a controllable sort, since we may not care which binary search tree

is ultimately produced. The af ter2 construct is still needed to delay the closing of the tree

until after all the integers have been appended to it. Although this extension has allowed us

to build a tree non-deterministically, it is still not providing us with the kind of non-

determinism which is implemented in Prolog through backtracking. Eta's non-determinism

is of the "don't-care" variety, in that our example program builds one of a set of possible

trees and we don't care which one is produced. This is unrelated to the non-determinism of

Prolog, which is commonly called "don't-know" non-detemiinism since it implies search for

a solution.
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3.4 Programming Aith Non-determinism

Extensions have been proposed to functional languages to allow programming using non-

determinacy for systems applications [4]. The basis of the mechanism is to add a non-

deterministic merge operator to the language, along with suitable constructs to enforce a

reasonable discipline in use of the construct.

Similar applica.ions can be programmed directly in Eta, since a non-deterministic merge

can be written in the language:

(lotroc ((nmerge (X (x y) ;; x and y are streams, that is lists to be merged.
(lot ((xl (car x))

(xr (cdr x))
(yl (car y))
(yr (cdr y))
(first (now))
(rest (now)))

(do
(if (-?- first xl) (-- rest (nmerge xr y)) nil)
(if (-?- first yl) (-- rest (nuerge x yr)) nil)
(cons first rest))))))

(nmerge (list I 1 1) (list 2 2 2)))

Nmerge takes two lists, and creates a third, whose elements are all the elements in the input

lists, interleaved in an arbitrary manner. In conclusion, the Eta language is certainly as

expressive as a functional language extended with non-deterministic merge.
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Chapter Four

Conclusions

4.1 Summary

The goal of this thesis has been to show that the functional programming style can be

enhanced with features from logic programming languages, and that the resulting languages

are more powerful for manipulating data structures. Starting from the functional language,

Lambda, the enhancement can be done in a two stage process. Adding the ability to create

an unbound variable and to constrain it later with the equate operation gave us the Delta

language. Delta allowed us to manipulate arrays more easily and provided a means of doing

I/O; unfortunately, Delta is not referentially transparent which makes equivalence of

programs more difficult to determine. This certainly impacts the ease of program

transformation negatively. elta is, however, a determinate language. Extending the

capabilities of the language further gave us Eta. Eta contains a conditional form of the

equate operation allowing one to try to equate two expressions, and to branch conditionally

based on success or failure. Eta is as capable as Prolog at solving the deep append problem,

but in our quasi-parallel execution model Eta is not determinate. Using lists, Eta can

simulate the non-deterministic merge features proposed as extensions to functional

languages. Although it is not proven here, this thesis provides some evidence that deep-

append and similar programming problems cannot be solved efficiently without introducing

non-determinism into the programming language.

The languages described here form the lower part of a hierarchy of expressiveness in

languages. Functional languages are the least expressive, followed by Delta-class, followed

by Eta-Class. Realistic languages with efficient parallel execution models can be developed

based on Delta. An example of this is the ID language (271. ID is a functional language

extcndcd with I-structurcs. giving it similar expressive power to Dclta. Moreover. ID is

designed to be executed on the Tagged Token Daaflow Architecture [2].
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The additional -1- feature of Eta does not complicate the language significantly, and

provides the expressive power of non-determinism to the language. This is needed for

systems programming on parallel machines. Operationally, the conditional equate

operation should be only slightly more complex than a regular -- operation. Also, since

both Delta and Eta have a functional language as a subset, any implementation technique

useful for functional programs can be applied to the functional subset of Delta or Eta.

A still higher level of the hierarchy contains languages with goal-directedness, or automatic

backtracking on logical variables, as well as the higher-order abstractions possible in

functional languages. To our knowledge, research combining Logic and Functional

programming in this way has restricted the language to have only first-order

functions [17, 28, 16, 32, 31].

There are some issues left unresolved by the previous discussions of the extended languages.

These include cyclic objects, run-time errors, and demand-driven evaluation.

4.1.1 Cyclic Data Structures

It is possible in Delta or Eta, to produce cyclic data structures. For example, the following

program creates a cons-cell whose car and cdr both refer back to itself:
(let ((X (few))

(y (new)))
(let ((c (cons x y)))

(do (-- x c) ;; this forms the car cycle
(-- y c) this forms the cdr cycle

c))) return the cell.

This implies that these languages cannot rely on simple storage reclamation strategies such

as reference counting. Functional programming advocates have generally discounted the -

utility of having cyclic data structures, since one can have an acyclic data structure such as

- an edge list, which represents a cyclic graph. This adds one level of interpretation to any use

of c~clic objects. and there are applications where cyclic data is useful. Rather than over

play this issuc. it is enough to say that there seem to be many applications which can use

cyclic structures prolitably. such as: network databases. dataflow graph compilers. type

checkers and type inference systems. lisp intcrprcters. scmantic networks, circuit simulators.

c.c.
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4.1.2 Run Time Errors

Use of the (al l ocate n) feature of Delta introduces new possibilities for run time errors

into the functional framework. Programs may deadlock, if the variables that they attempt to
read are never defined, or they may "overconstrain" a location, that is, write it twice.

. Neither of these situations was possible with simple tuples in the functional language. The

new error situations are actually reasonable because they are quite analogous to bounds

checking errors. Bounds checking must be done at run time, since an arbitrary computation

"- may be used to generate an index into a tuple. Since Delta does not allow one to write a

location twice, if a program does so, then there is an error in the program. Probably what

was intended was to write some other location, but a bug led to the accidental generation of

the same subscript for more than one "equate" operation. Generating an illegal index is a

reasonable run time error. Deadlock could be caused also by an indexing error; that is,

attempting to read the wrong location, or never writing one. In any case, the errors do not

seem that unreasonable.

4.1.3 Demand Driven Evaluation

Throughout this thesis, we have used only a data-driven noton of parallel execution.

, Demand driven execution is an equally viable technique for the execution of functional

programs, and it provides the ability to manipulate "infinite" data objects.

Unfortunately the non-sequential nature of our languages implies that demand-driven

evaluation is inherently difficulL If a program in Delta produces unbound variables, and

the value of one of them is needed, there is no way to know what computation to start up in

order to produce the value. One could of course start up any computation that could

possibly influence the variable, but that is not in the spirit of true demand driven execution,

since excess work would be done to compute elements of the structure which are not
actually needed. The pr 'em of demanding the value of an unbound variable is analogous

to the problem of demanding the solution to a logical or of two boolean expressions. One

need only e aluatc eithcrofthc two expressions to true to produce the demanded value. To

demand the value of an unbound variable, one would have to dcmand all computations
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"hich could result in any constraint on that variable. However one only really needs the

single computation which ultimately gives that variable its value. Because of these

difficulties, we avoided presenting a demand-driven model for any of the languages here.

Lindstrom 1251 has described a subset of a functional language extended with logical

variables using a complex variation of demand driven evaluation, but he does not deal with

the issue of indexable data structures composed of these variables or with dynamic

procedure invocation in these languages.

4.2 Comparison to Related Work

There has been a significant amount of research on integrating Logic programming and

Functional programming. The key and unique aspect of this thesis is the restriction of

unification to the behavior of equate. This simplifies the operational semantics of the

languages to the extent that abstract interpreters could be presented directly. Equate also is

a great deal less complicated to implement than true unification based binding. Our

"- approach has been far more operational than most because of the issues that arise in Delta

programs that have no adequate sequential semantics, and because of the desire to compare

the expressive power of the languages in a reasonable framework. The focus of most other

research has been on integrating Logic and Functional Programming in a harmonious

manner retaining as much of both paradigms as possible. v.

Most of the work on combining Logic and Functional programming evolves from the idea

of adding additional equality axioms to the rules making up a logic program. These

equality rules can be used by an extended unification algorithm to rewrite terms in a

manner much like reduction for functional languages [32, 31, 221 Several researchers are

now pursuing a mechanism called narrowing, which is a generalization of term rewriting and
resolution [28. 16, 171. Reddy [29] has written an article which tries to clarify the

relationship between Logical and Functional programming. These languages all differ from

thc approach of this thesis in that thc retain the non-dctcrminism of Logic programming.

and add onk lirst-order Functions to the framcwork. Only Lindstrom [251 hais lookcd at

* dding h gica,' ,,rles to tum:tional languagcs wkithin a Illy detcrmin-isuc fi-uiework. -

65



§4.3 Conclusions 66

4.3 Directions for Future Research

There are at least two areas of future research which are immediately related to this thesis. j
First, the ability to exploit parallel processors for searching in parallel is an area that has not

been addressed by functional programs. Search problems are common in artificial

intelligence programs, and the very notion of searching implies that some "wasted" work

must be done. In a parallel machine where there is excess processing capacity, one would

like to have an easily controlled way of using many processors so that parallel threads of

* computation each search in their own part of the search space possibly interacting with the

* other branches for rapid pruning. Logic programming languages with backtracking seem to

be able to expose this OR-parallelism, but do not seem to provide a framework in which it

can easily be controlled. The approach of enhancing the function-style framework with an

explicit search capability may be easier to implement for practical systems.

Second the programming methodology used in languages with logical variables is an

important consideration. Use of logical variables allows arbitrary communication between

sections of a program through data structures. Reasonable conventions for how this

technique should be used are needed to avoid writing programs with opaque structure. -
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